

Mecklenburg-Vorpommern Ministerium für Klimaschutz, Landwirtschaft, ländliche Räume und Umwelt

Water quality and alert system based on daily high-res Planet satellites

EOM/7 planet.

Eckhard Kohlhas Ministry for Climate protection, agriculture, rural areas and the environment

Overview

- Useful facts about the waters in Mecklenburg-Western Pomerania
- Obligations for water monitoring and health care at bathing areas
- Previous experiences in water monitoring with remote sensing
- Motivation for using SuperDove data goals of the project
- Components of the eopPortal Mecklenburg-Vorpommern
- Examination of the received data
- Validation (first) results
- Conclusions

Usefull facts about the waters in Mecklenburg-Western Pomerania

 Rivers and streams

 1st order
 1.450 km

 2nd order
 31.611 km

 Lakes
 2.205

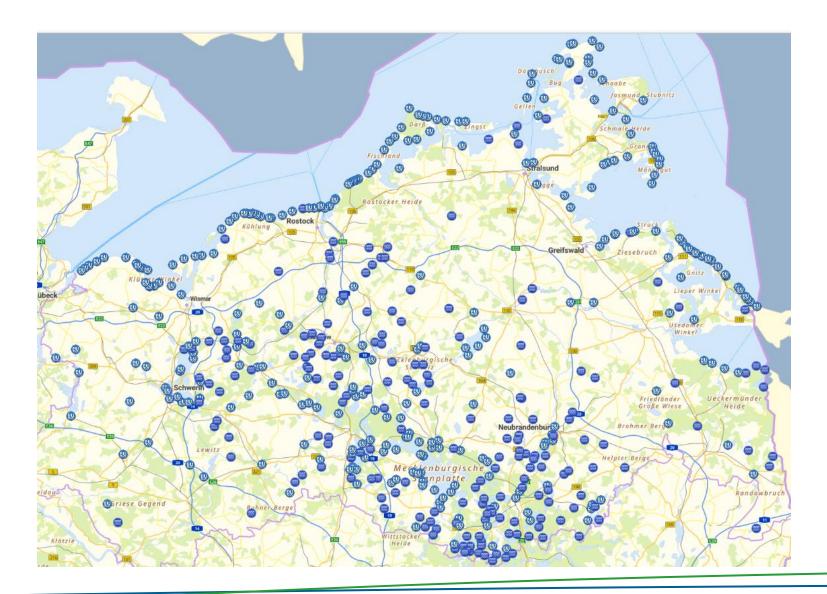
 > 1 acres
 2.205

 > 10 acres
 576

 > 50 acres
 176

 Baltic Sea
 Coastline 1.700 km

Source: LUNG M-V


The inland water surface takes up six per cent of the total area

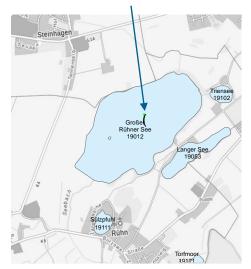
Sea area 7.640 km²

450 Bathing spots

Monitoring obligations

- 850 running water-bodies: every two years
- 202 lake water-bodies: every three years
- 21 coastal water-bodies: every year
- 450 bathing spots: every year

not enough resources for


- country-wide monitoring (i.e. smaller lakes)
- every-year monitoring (lakes and streams)
- shorter time intervals (daily/weekly)
- findings offside the measuring point

possible solution: remote sensing?

measuring point sampling once a month

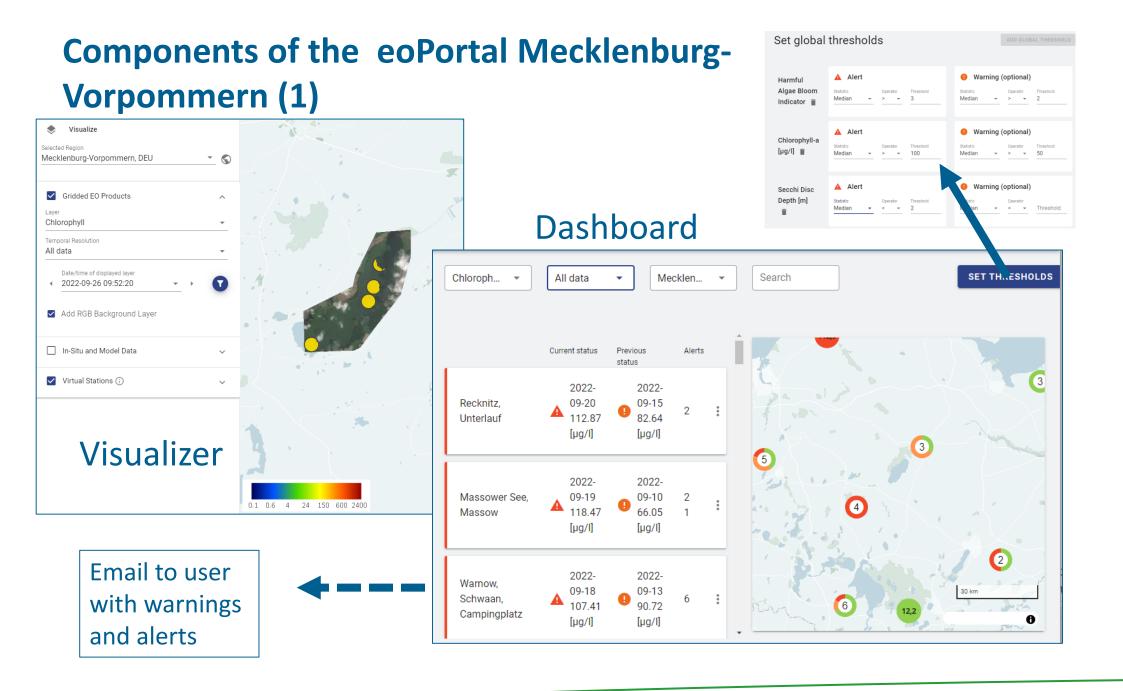
Experiences from a previous project (2019) Used data: Landsat, Sentinel 2&3, WorldView

Comparison of in-situ data in lakes and rivers with satellite-based results good:

- Chlorophyll: trophic level is correct in 63% of the cases, greater scatter in shallow lakes, EO overestimated in deeper, nutrient-poor lakes
- Visibility depth: generally good agreement. EO underestimated in deeper rather nutrient-poor lakes; overestimated in shallow, nutrient-rich lakes
- Temperature: often too little data (only Landsat), good agreement with simultaneous measurements (after correction)
- high-resolution satellite data (WorldView) is also suitable for rivers
 not good:
- the bottom resolution and return frequency of Copernicus-data were not suitable for sufficiently resolving smaller water-bodies and short-term phenomena such as algal blooms
- high-resolution data generates high costs and is not widely available

Motivation for the trial with SuperDove data – goals of the project

Motivation


- high resolution data
- (allmost) daily overflight
- spectral & radiometric compatibility with Sentinel-2

Goals

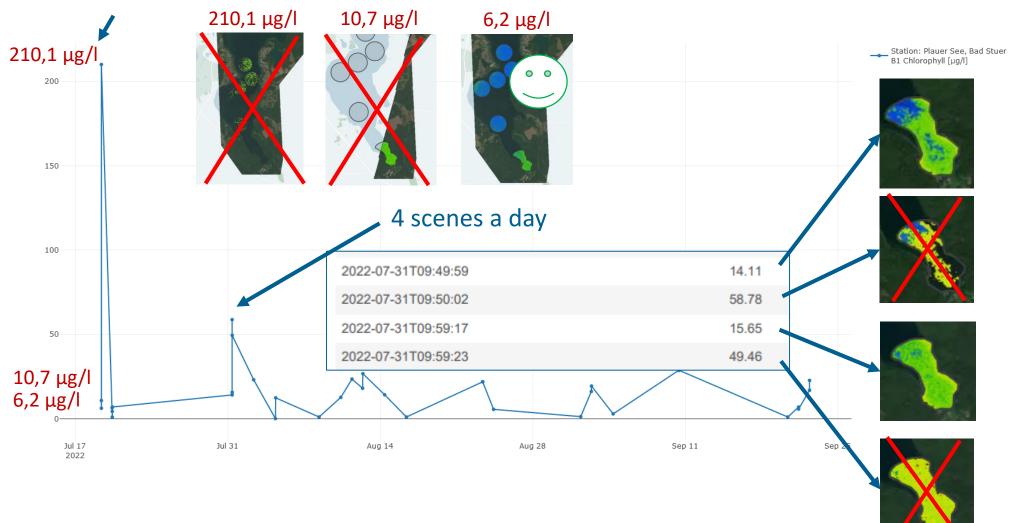
- examine the possibilities and limits of surface water monitoring for chlorophyll, visibility depth, and harmful algae
- find out of the synergy effects between health surveillance and surface water monitoring
- development of an easy-to-use alarm system for harmful algae
- verification of the satellite-based with in-situ measurement results
- first step towards comprehensive monitoring of surface waters?

Seite 8

Components of the eoPortal Mecklenburg-Vorpommern (2)

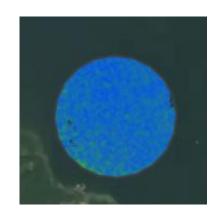
< Lankower See, Suedufer Last scene: Last Monday Show / hide thresholds All data 2022-08-11 10:08:39 CHL - Chlorophyll Chlorophyll Chlorophyll [µg/l] 30 20 15 33 10 0 Aug 28 Jul 17 Jul 31 Sep 11 Aug 11, 2022, 10:08 Lankower Berge 2022 Current value (2022-09-20 10:09) 1.3 m Previous value (2022-09-12 09:09) 7.2 m SDD - Secchi-Tiefe NEUMÜHLE cchi-Tiefe [m] 15 10 . Secchi-Tiefe Se 0 Jul 17 Jul 31 Aug 14 Aug 28 Sep 11 2022 Current value (2022-09-20 10:09) 2 Previous value (2022-09-04 10:09) 2 Lankower Berge - Algenblüten-Indikator [Inul] HAB Algenblüten-Indikator 2 1.5 NEUMÜHLE Jul 17 Jul 31 Aua 14 Aug 28 Sep 11 2022

Browser for data and maps


EOMAP GmbH & Co. KG | Schlosshof 4a | D-82229 Seefeld | info@eomap.de | Legal Notice

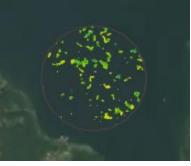
data examination – more than one scene a day

planet.


EOMV5

data examination - mysterious phenomena?

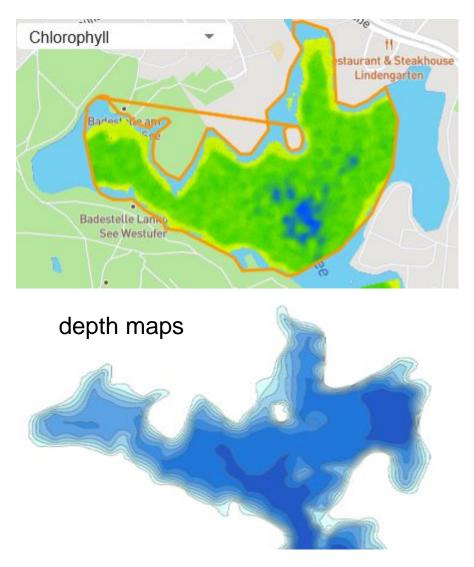
Kummerower See, Gravelotte 8.8. 9:16:59

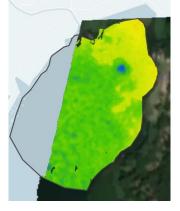


Plauer See, Dresenower Muehle

19.7.9:49:05

?


19.7. 9:49:09 four seconds later



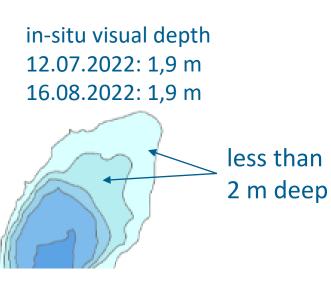
data examination – shallow water, tree shadow?

Lake Lankow

Island Lake

Tiefenangaben [m]

Insel


0 bis 1 1 bis 2

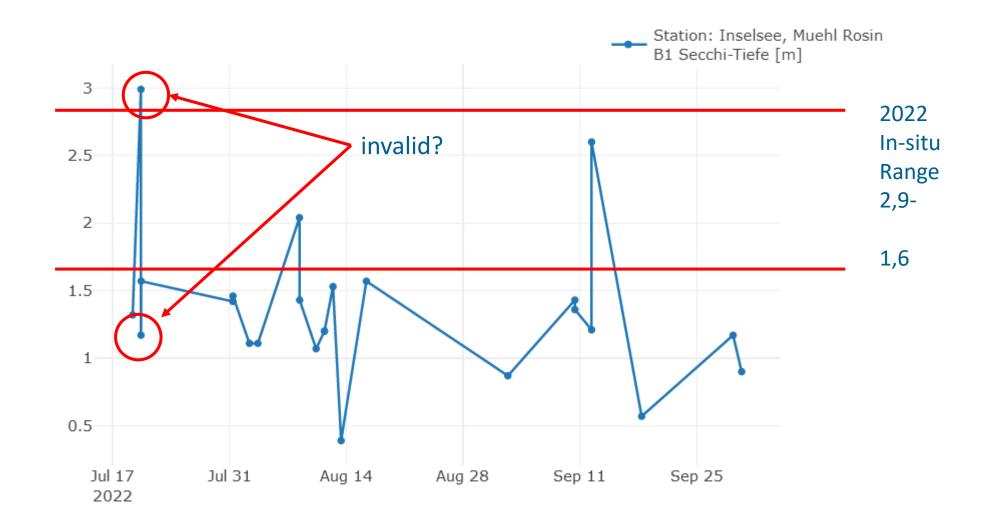
2 bis 3

3 bis 4 4 bis 5

5 bis 6

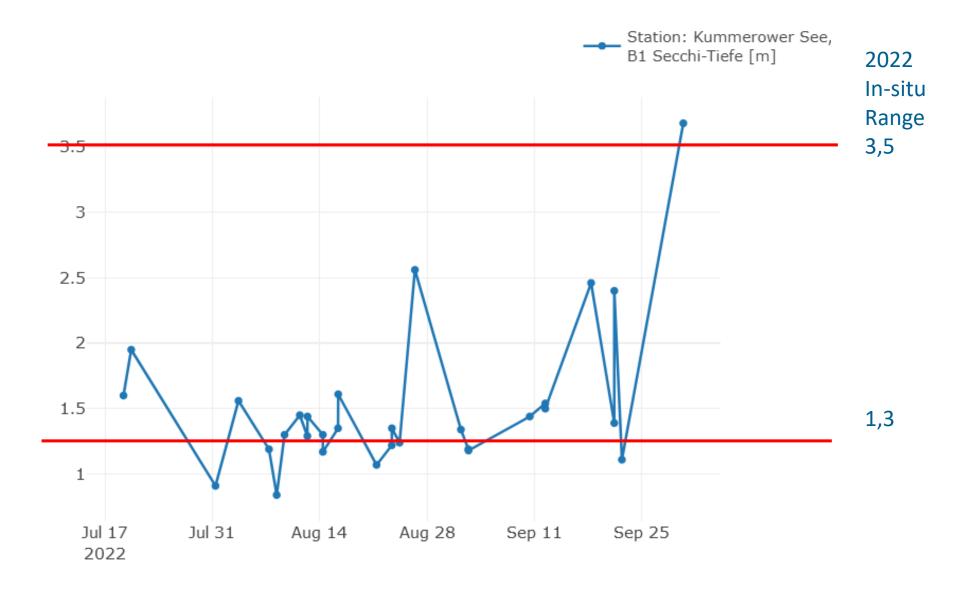
scene 02.08.2022

data validation - chlorophyll

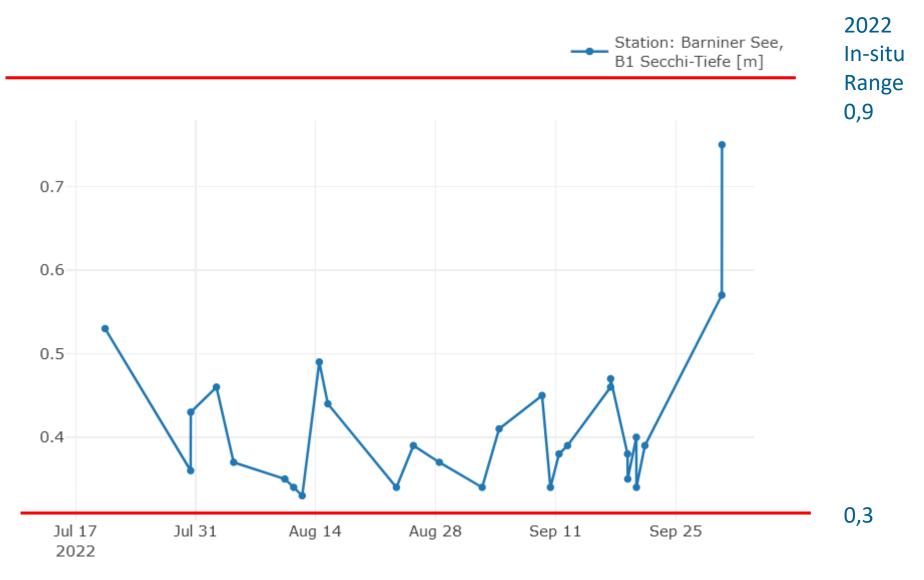

In-situ se	ason ave	rage Chl(a) [µg/l]												
	Plauer		Kumme-		Müritz		Müritz	Kleine	Binnen-		Barniner		Gr.		Mal-
	See	see	rower See	Seemitte	Sietow	Roebeler Bucht	Klink	Müritz	müritz	kower See	See	See	Rühner See		chiner See
2011	8,7	5,2	15,2	7,0	7,0	50,2	6,0	37,3	5,7	7,1	88,9		108,1	7,2	
2012	7,8	7,5	12,9	5,9	5,0	53,7	4,3	32,4	4,6			31,5			91,9
2013	5,8	6,0	10,3	3,4	3,1	48,1	2,8	29,6	3,0	7,5					
2014	4,6	7,8	11,4	1,9	2,5	46,1	2,5	32,5	2,5		73,7		61,9		
2015	3,9	5,8	7,0	1,7	1,6	24,9	1,9	37,3	1,7			34,3		11,0	
2016	2,7	5,3	5,1	2,4	2,2	24,7	2,2	35,3	2,3						
2017	3,1	7,0	7,1	2,3	2,4	17,7	2,2	28,6	2,1	18,3	82,3				61,7
2018	4,1	9,5	13,9	3,7	2,5	25,5	2,7	27,1	3,4				111,0		
2019	3,6	5,0	3,7	2,6	2,6	41,4	2,7	42,2	2,9					9,8	
2020	3,6	3,9	4,5	2,7	2,2	27,0	2,2	41,3	2,4	13,8					
2021										12,2					
2022EO	3,2	1,8	5,5	1,3	1,6	1,8	1,5	14,7	2,7	11,3	103,3	16,9	72,5	5,8	89,4

- In general, there is good agreement between the satellite-based seasonal mean and the available in-situ data

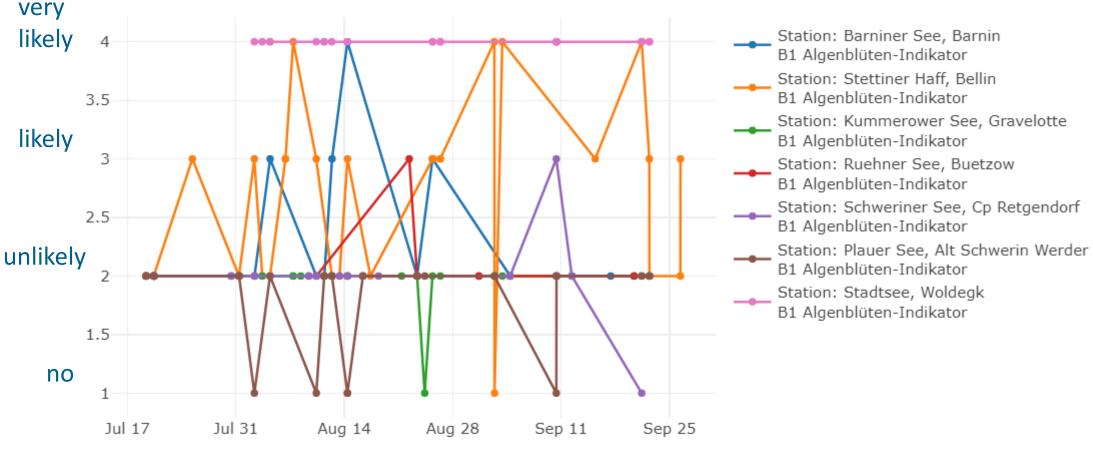
- the final evaluation can be done after receiving the in-situ data from 2022 (in 2023)
- some results are implausible and need to be checked more closely


data validation – lake with common visual depth

EOMAP planet.


data validation - lake with higher visual depth

EOMAP (planet.


data validation – lake with very low visual depth

EOMAP planet.

data validation - indicator for "harmful algae" (HAB)

- the usual suspects are represented in "very likely" and "likely"
- bathing ban in Stadtsee Woldegk and Stettiner Haff
- no in-situ concentrations of cyanobaceria available
- subjekt of further research

planet.

Conclusions:

Possibilities and limits of surface water monitoring

- the eoPortal is a powerful and user-friendly tool (with still some bugs)
- the process chain to make yesterday's data available was established (but didn't always work proberly)
- the results for chlorophyll, HAB and visual depth are satisfactory but:
 - the virtual stations have to be chosen more accurate
 - some more input data must be discarded
 - the processing algorithms still need to be improved
- to get one or more measurement results a week it is a quantum leap in monitoring of lakes and coastal waters
- too few suitable results for the selected rivers

Conclusions:

Synergy effects with health surveillance, alarm system for harmful algae

- the employees of the health service were enthusiastic about the new possibilities
- they suggested further developing the indication of cyanobacteria
- both for water body monitoring and for health surveillance, the entire water body must be evaluated for a proper assessment of the data
- this would also open up new possibilities for the development dynamics of the plankton in the respective lake example: Timing of algal blooms in spring

Conclusions:

First step towards comprehensive monitoring of surface waters? YES!

necessary improvements

- further development of the eoPortal into an analysis and data management tool
 - plausibility check based on existing, checked data
 - discard invalid measurements
 - import and export of data from and to the water quality database
- nationwide coverage required
- the current price model for the raw data should be adapted to the possibilities of a state administration

Mecklenburg-Vorpommern Ministerium für Klimaschutz, Landwirtschaft, ländliche Räume und Umwelt

Thank you for your attention!

Ministry for Climate protection, agriculture, rural areas and the environment Eckhard Kohlhas Telefon +49 385 588-16460 e.kohlhas@lm.mv-regierung.de

https://www.regierung-mv.de/Landesregierung/lm/